マルチメディアデータ

文字の符号化

- 文字コード:ビットパターンと「文字」を対応づけるルール
- 文字コードセット(以降,文字セット)
 - 。 数値と文字の対応
 - どこまでの「文字」を扱うか?
- 文字エンコーディング
 - 。 文字コードセットによって数値化された文字をどのようなビットパターンにするか

文字セッ ト	ビット 数	文字種	備考
ASCII	7bit	制御文字,数字,アルファ ベット	
ISO- 8859-1	8bit	ASCII + アクセント	Latin-1
JIS X 0201	8bit	ASCII + カタカナ	半角カタカナ
JIS X 0208	16bit	全角かな/カナ,漢字	制御文字ははASCIIと同じ
Unicode	4byteま で	世界中の文字	16bitまでの範囲をBMP (Basic Multilingual Plane)

文字コード	文字セット	備考
ASCII	ASCII	そのまま使う
ISO-2022-JP	ASCII, JIS X 0208	文字セットを切り替える
Shift_JIS	JIS X 0201, JIS X 0208	ASCIIと互換性
EUC-JP	ASCII, JIS X 0208	ASCIIと互換性
UTF-8	Unicode	ASCIIと互換性,1から4bytes可変長
UTF-16	Unicode	バイトオーダーによる違い

画像

- 画像オブジェクトの形式
 - ビットマップ(ラスタデータ):「色」の配置
 - ドロー(ベクタデータ):「点」と「線」の配置
- ラスタ形式
 - 。 格子上のすべての点に配置する「色」を決める(色情報を持った点 ▶ ピクセル)
 - 写真などの複雑なデータも表現可能
 - 拡大・縮小などの情報量の増減が不得意
- ベクタ形式
 - 格子上の「点」とそれをつなぐ「線」の特徴(曲がり具合や色)を決める
 - 写真などの複雑なデータは表現できない(イラストなどに適する)
 - 。 拡大・縮小などの情報量の増減が得意

色データ

- RGB(光による表現):ディスプレイなど
 - 。 R (Red), G (Green), B (Blue) のそれぞれの強さ(濃淡)で色を表現
 - 。 RGBが全部混ざると白になる
- CMYK(絵の具による表現):プリンターなど
 - 。 C (Cyan), M (Magenta), Y (Yellow) のそれぞれの強さ(濃淡)で色を表現
 - 。 CMYが全部混ざると黒になる
 - 。 K (Key plate) は通常黒で CMY で作る黒を補強

音

- 空気の連続的かつ周期的なな圧力変化(波の性質)
- ・ 波の周期が速い ▶ 高い音
- もとの波を復元できるようなデータを格納する
 - 。 圧力の大きさ

サンプリング

- 「大きさの変化」(つまり「速さ」)を記録する必要がある
- 連続する「瞬間」を切り取り「速さ」を記録
- どの「瞬間」を切り取ればいいのか?
 - 最大周波数の2倍より大きい周波数で観測することでもとの情報を復元できる
- ※周波数 = 1/周期

音データ

- 観測される数値(振幅)を量子化
- 量子化の方法で種類がある:線形 ▶ リニアPCM
- CD-DA (CD音源) : サンプリング周波数 44.1kHz, 量子化ビット数 16bit

動画

- 映像データ(連続する画像データ)と音データ
- フレームレート
 - 1秒間が何画像で構成されるか
- 動画はデータ量が多くなるので、通常はデータ圧縮が行われる
 - 前の画像との差分だけを記録,など
 - 。 動画クオリティ
 - ビットレート:毎秒あたりどのくらいのビット数にするかの目安
 - YouTube 1080p(フルHD): 1,000 から 3,000 kbps

10